Photocatalyst Nanofibers Obtained by Calcination of Organic-Inorganic Hybrids

نویسندگان

  • Koji Nakane
  • Nobuo Ogata
چکیده

Electrospinning (ES) is one of the most useful techniques to form nanofibers in a diameter of several hundred nanometers (Doshi & Reneker, 1995, Buchko et al., 1999, Huang et al., 2003). The diameter of the nanofibers produced by ES is at least one or two orders of magnitude smaller than those of conventional fiber production methods like melt or solution spinning. As a result, the electrospun nanofibers have high specific surface area (Yamashita, 2007). These nanofibers are well-suited to be used as chemical reaction fields (Nakane et al., 2005, 2007). Much attention has been paid to the formation of both organic polymeric nanofibers and inorganic nanofibers using ES (Ramakrishna et al., 2005). Many kinds of inorganic nanofibers (SiO2, Al2O3, ZrO2, NiCo2O4, and so on) have been obtained by calcination of organic-inorganic hybrid precursor nanofibers formed by ES (Guan et al., 2004, Shao et al., 2004, Chronakis, 2005, Panda & Ramakrishna, 2007, Krissanasaeranee et al., 2008). The formation of TiO2 nanofibers have been also reported by several research groups. Li and Xia formed anatase-type titanium oxide (TiO2) nanofibers by the calcination of poly(vinyl pyrrolidone) (PVP)-Ti tetraisopropoxide (TTIP) hybrid nanofibers at 500°C in air (Li & Xia, 2003). The TiO2 nanofibers obtained would be a useful material for a photocatalytic reaction, but their usage has not been investigated. Ethanol has been used as the solvent of the spinning solution to form the hybrid precursor nanofibers. Therefore, a spinneret could be stopped up by a solid material because ethanol will evaporate from the tip of the spinneret during the spinning. Furthermore, TTIP is very easily hydrolyzed, and thus a water-free condition is required for the use of TTIP on ES. Another groups also formed TiO2 nanofibers by calcination of TiO2-PVP and TiO2-poly(vinyl acetate) precursors which were formed by ES using organic solvents such as ethanol and dimethylformamide (Kim et al., 2006, Nuansing et al., 2006, Kumar et al., 2007, Ding et al., 2008). Li and Xia reported the formation of TiO2 hollow-nanofibers (nanotubes) by ES of two immiscible liquids (TTIP-PVP ethanol solution and heavy mineral oil) through a coaxial, two-capillary spinneret, followed by selective removal of the cores and calcination in air (Li & Xia, 2004). The TiO2 nanotubes with uniform and circular cross-sections were obtained by the method. Kobayashi et al. reported the preparation of TiO2 nanotubes using the gelation (self-assembly with a rodlike fibrous structure) of an organogelator (It is not ES.) (Kobayashi et al., 2000, 2002). The organogelator is a cyclohexane derivative that was specially Source: Nanofibers, Book edited by: Ashok Kumar, ISBN 978-953-7619-86-2, pp. 438, February 2010, INTECH, Croatia, downloaded from SCIYO.COM

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation and Characterization of Tetracomponent ZnO/SiO2/SnO2/TiO2 Composite Nanofibers by Electrospinning

[Zn(CH3COO)2 + PVP]/[C2H5O)4Si + PVP]/[SnCl4 + PVP]/[Ti(OC4H9)4 + CH3COOH + PVP] precursor composite fibers have been fabricated through self-made electrospinning equipment via electrospinning technique. ZnO/SiO2/ SnO2/TiO2 composite nanofibers were obtained by calcination of the relevant precursor composite fibers. The samples were characterized by thermogravimetric-differential thermal analys...

متن کامل

Rapid synthesis of polymer-silica hybrid nanofibers by biomimetic mineralization

Biomimetic formation of silica from polyamines such as poly(ethylene imine) (PEI), inspired by the proteins found in diatoms and sponges, has been actively investigated recently as a potential route to silica formation compared to the conventional sol–gel process. We report silica formation onto nanofibers of PEI blended with poly(vinyl pyrrolidone) (PVP) obtained via electrospinning of their 5...

متن کامل

Metal-organic framework materials as nano photocatalyst

Photocatalytic degradation of toxic organic compound in water, soil and air by semiconductor catalysts such as TiO2 and ZnO have received much attention over the last two decades. However, the low quantum yield, easy agglomeration and difficult post-separation of these inorganic catalysts limit their application for large-scale applications. Metal-organic frameworks (MOFs) are the latest class ...

متن کامل

Effect of TiO2 Nanofiber Density on Organic-Inorganic Based Hybrid Solar Cells (RESEARCH NOTE)

Abstract In this work, a comparative study of hybrid solar cells based on P3HT and TiO2 nanofibers was accomplished. Electrospinning, a low cost production method for large area nanofibrous films, was employed to fabricate the organic-inorganic hybrid solar cells based on poly (3-hexylthiophene) and TiO2 nanofibers. The performance of the hybrid solar cells was analyzed for four density levels ...

متن کامل

Efficient solar photocatalyst based on cobalt oxide/iron oxide composite nanofibers for the detoxification of organic pollutants

A Co3O4/Fe2O3 composite nanofiber-based solar photocatalyst has been prepared, and its catalytic performance was evaluated by degrading acridine orange (AO) and brilliant cresyl blue (BCB) beneath solar light. The morphological and physiochemical structure of the synthesized solar photocatalyst was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), X-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012